Math 101 2nd Exam Date: May 3, 2007 Duration: 90 min.

Calculators, mobile phones, pagers and all other mobile communication equipment are not allowed.

Answer the following questions:

1. Use differentials to approximate $\frac{1}{(0.98)^{10}}$.

[3 pts.]

2. a) State the Mean Value Theorem

[1 pt.]

b) Let

$$f(x) = \frac{x+1}{x-1}.$$

Show that there is no real number c such that

$$f(2)-f(0)=2f'(c).$$

Why does this not contradict the Mean Value Theorem?

[3 pts.]

- 3. A metal in the shape of a right circular cone, whose height is twice its radius, is being heated. If the radius is increasing at a rate of 0.001 cm /sec., find the rate at which its volume is increasing when its radius is 2 cm. [4 pts.]
- 4. Use implicit differentiation to find y", if $x^2 + y^4 = 16$.

[3 pts.]

- 5. Let $f(x) = 3x(x \frac{5}{3})^{\frac{3}{3}}$ be defined on the interval [-1,2]. Find the absolute maximum and absolute minimum of f. [3 pts.]
- 6. Let $f(x) = \frac{x^2-9}{2x-4}$.

[8 pts.]

- a. Find the x and y –intercepts of f.
- b. Find the vertical and horizontal asymptotes to the graph of f, if any.
- c. Find the intervals on which f is increasing and the intervals on which f is decreasing, if any.
- d. Find the intervals on which f is concave up and the intervals on which f is concave down, if any.
- Sketch the graph of the function f.

Total [25 pts.]

Total= 25pts

Total= 25pts
$$\frac{A_{NRAJers}}{A_{NRAJers}}$$

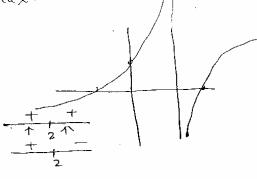
Sol $f(x) = \frac{1}{x^{10}} + f(1) = -10$

$$\frac{1}{(0.98)^{10}} \approx 1 - 10(0.98 - 1) = 1 - 10(-0.02) = 1.2$$

02. (a) Statement of two MVT.
(b)
$$f'(c) = \frac{(c-1)(c+1)}{(c-1)^2} = \frac{-2}{(c-1)^2}$$

 $f(2) - f(0) = 3 - (-1) = 4 = 2f'(c)$
 $\Rightarrow 4 = \frac{-4}{(c-1)^2} \Rightarrow (c-1)^2 = -1$ (which is not possible)
f is not differentiable on $(0,2)$.

Q3.
$$V = \frac{1}{3}\pi v^2 h$$
 where $h = 2r$.
 $V = \frac{1}{3}\pi (2v^3)$
 $\frac{dV}{dt} = 2\pi v^2 dv = 8\pi (0.0011 \text{ cm}^3/\text{sec}$.


Q4,
$$2x + 4y3y' = 0$$

 $y' = -\frac{2x}{4y3} = -\frac{x}{2y3}$
 $y'' = -\frac{2x^{3} \cdot 1 - x(6y^{2})y'}{4y6}$
 $= -\frac{2y^{3} - 6xy^{2} \cdot (-\frac{x}{2}y3)}{4y6} = -\frac{2y^{4} + 3x^{2}}{4y^{7}}$

Q5.
$$f'(x) = \frac{5 \times -5}{(x - 5/3)^{1/3}}$$
, critical Nos. $\{1, 5/3\}$

$$\frac{C}{-1} \frac{f(x)}{-3(\frac{64}{9})^{1/3}} - \min$$

$$\frac{1}{5/3} \frac{9}{0} \frac{3(\frac{4}{9})^{\frac{1}{3}}}{3(\frac{8}{9})^{\frac{1}{3}}} - \max$$

(q)
$$f_{11}(x) = -2/(x-5)^2$$

